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Layzer type models for pressure driven shells
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Models for the nomlinear instability of finite thickness
shells driven by pressure are constructed in the style of
Layzer. Equations for both Cartesian and cylindrically con-
vergent/divergent geometries are derived. The resulting equa-
tions are appropriate for incompressible shells with unity At-
wood number. Predictions from the equations compare well
with two-dimensional simulations.
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Instability theories for shells subject to a constant ac-
celeration have been constructed for the linear case with
arbitrary Atwood number [1] and nonlinear case with
unity Atwood number [2] in Cartesian geometries. Al-
though the importance of Rayleigh-Taylor (RT) instabil-
ity to inertial confinement fusion (ICF) and astrophysi-
cal processes is quoted as the motivation for most works
on RT theory, most of the physical instability drives en-
countered in ICF and astrophysics come from pressure
(P) and not a constant acceleration (g).

A trivial substitution, g — P/pA where p is shell den-
sity and A is shell thickness, is generally not adequate
since parts of the shell may accelerate relative to one an-
other due to the shell thickness varying from location to
location. The shell thickness variation may be imposed
initially or my evolve as the instability proceeds. So, in
order to resolve this effect a nonlinear theory for pres-
sure driven shells is derived in this paper. The resulting
equations will be limited to an incompressible shell with
unity Atwood number, but results for both Cartesian and
cylindrically convergent geometries will be obtained.

Potential Flow Solution. This method used here is
based upon Layzer’s [3] single interface treatment and its
extension by Hecht et al. [2], so like these papers we will
assume potential flow, i.e. the fluid velocity is, v = V¢
with ¢ being the velocity potential. If in addition we
assume incompressible flow, then we know that ¢ must
satisfy Laplaces equation VZ¢ = 0.

Anywhere in the shell of fluid, the velocity potential
must satisfy the Bernoulli equation
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The above equation provides a moving boundary con-
dition on both shell interfaces if the pressure is known
on both shell interfaces. In particular, we will assume
that the pressure at the upper shell interface boundary
is known P = P which may be a function of time. At
the lower shell boundary we assume P = 0.
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_ FIG. 1. A shell of material is driven from rest by a pressure
P. The notional flow of shell material is away from the bubble
center at * = 0 towards the boundary (periodic or rigid) at
r = fw.

The shape of the upper and lower shell interfaces are
expressed as expansions in powers of z,

Yt:ag(t)+a2(t):v2+... (2)
Yo = Bo(t) + Ba(t) 2° + ... (3)

where the a and 8 are time dependent coefficients that
will be determined below. The initial value of the coef-
ficients o and 3 are determined from the initial imposed
perturbation of the shell interfaces. The physical state-
ment that the upper and lower liner interfaces move with
the fluid is captured by the advective derivative equation
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which is evaluated at the upper and lower shell bound-
aries given by Egs. [2,3]. Together, once we have a solu-
tion form for the velocity potential, Eqs. [1-4] completely
determine the evolution of the shell.

Cartesian Geometry. In Cartesian geometry, the solu-
tion of the Laplace equation involves a Fourier series of
exponential functions and trigonometric functions. Like
Layzer, we only retain the first term of the Fourier sum
in our solution

¢ = |a(t)e™ + b(t)e_Tw] cos (7;}_33)
+e(t)y + d(t) (5)



where a(t)-d(t) are time dependent coefficients that are
to be determined. The only justification there is for drop-
ping the higher terms in the Fourier solution comes from
seeing that the above anzatz appears to give good results
in the end.

The first few steps in the solution are somewhat me-
chanical, albeit the algebra is lengthy. We substitute Eq.
[5] into Eq. [1] and then evaluate the result at the shell
interfaces given by Egs. [2,3] obtaining a complex ex-
pansion in even powers of z. Since the entire expression
must evaluate to zero, we set coefficients of the expansion
(which are functions of time only) to zero order-by-order.

Thus at O(z°) we find
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where the over-dot stands for a time derivative. At O(z?)
we find
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Similarly to the above, when we substitute Eq. [5] into
Eq. [4] and then evaluate the results at the interfaces
given by Eqgs. [2,3] we obtain four more equations that
close the system again by collecting terms in powers of z
and evaluating the coefficients to zero. Thus, we obtain
at O(z0)
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while at O(z?) we obtain
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Eqgs. [6-13] are completely closed and, with initial con-
ditions, completely describe the evolution of the flow field
and shell motion in the vicinity of the apex of the bubble.
Although the equations are highly nonlinear, they are lin-
ear in terms of the time derivatives of the unknowns a(t)
to d(t), the o’s and the 3’s. Egs. [10-13] already have
the time derivative isolated from the rest of the equation.
For Eqs. [6-9] one may use standard matrix techniques to
solve for the flow variables a(t) to d(¢). One may reduce
the complexity of the ultimate solution by eliminating
the physically uninteresting quantity d(t) from Eqgs. [6]
and [7] by subtracting the two equations. One is left to
solve a 3 x 3 system for a, b, and c.

Cylindrical Geometry. The solution for cylindrical ge-
ometry is similar to the Cartesian case, one difference is
the form for ¢ that satisfies the Laplace equation

6 = [atoyta (Z2) + bty (22 cos ()
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Here the modified Bessel functions take the place of the
exponentials used in the Cartesian case. Eq. [14] includes
the effects of convergence (or alternatively divergence)
through the modified Bessel functions. The second dif-
ference is a minor re-expression of the interface shapes in
terms of R and z, i.e. Ry = ap(t) + ag(t)z® + ... and
Ry = Bo(t) + Be(t) 2% + ...

Otherwise the mathematical procedure is the same as
the Cartesian case. Thus from Eq. [1] at O(2°) we find
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The equations coming from Eq. [4] are much simpler. At
O(z°) we have
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Like the equations for the Cartesian case, these complex
nonlinear equations are linear in terms of the time deriva-
tives and can be inverted for the time derivatives using
standard matrix techniques.

Comparison with Simulation. As a test of our equa-
tions, we compare the predictions of the equations pre-
sented in the previous section with the predictions of a
direct simulation. The code we choose to use is CALE,
which is a C-based arbitrary Lagrangian-Eulerian numer-
ical scheme. We force CALE to run in pure Lagrangian
mode so that the pressure boundary conditions match
those we stated in the previous section. The simulations
used a 91 x 91 resolution grid, with thirty zones used
to resolve the shell thickness. Since CALE is actually a
compressible hydrodynamics code, we take the equations
of state to be ideal gases, but with polytropic indicies
of ¥ = 100 in order to mimic an incompressible fluid,
again to match the assumptions made in the theoretical
development.

The initial shape of the shell interfaces for this example
problem are given by Eqs. [2] and [3] with ap = 10.0,
Bo = 9.0, and o = 0.3 and B> = 0.1. The pressure
driving the bubble is taken to be P = 1, the density of
the shell is taken to be p =1, and w = 5.
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FIG. 2. A comparison of the position of the shell
centroid, R(t) = [ao(t) + Bo(t)]/2, and shell thickness,
A(t) = ao(t) — Bo(t), are shown for the Cartesian and cylin-
drical case. Both quantities are normalized to their initial
values. The solid curves are from the simulation and the dot-
ted curves are from the theory. The effects of convergence on
A are obvious.

Fig. 2 compares the theoretical prediction of the bub-
ble trajectory R(t) = [ao(t)+B0(t)]/2 and the shell thick-
ness A(t) = ap(t) — Bo(t) with those predicted by the
simulation. The agreement is good until late time when
the theory begins to underpredict the shell thinning when



compared to the simulation. The curves for R(t) are in
such good agreement that they are indistinguishable in
the figure. The agreement for the bubble thickness is al-
most as good except for the small sound wave oscillation
seen in the simulation results. Good agreement is also
seen in the shell velocity as can be observed from Fig. 3.
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FIG. 3. The shell velocities, R(t), are intercompared be-
tween the simulation and theory for both the Cartesian and
cylindrical cases. Not suprisingly, the shell in Cartesian ge-
ometry accelerates more rapidly than the cylindrical version.

Feedthrough. Classically from linear theory, the ex-
pected coupling strength between the two shell interfaces
is expected to go as exp(—2mA/w), e.g. Refs. [1] and
[4], so it is not suprising to see that the cylindrical shell
exhibits less coupling between the curvature of the inter-
faces than the Cartesian shell exhibits (see Fig. 4) even
in the nonlinear phase. The natural thickening of the
shell in the cylindrical case, due to convergence, pushes
the interfaces apart and thus tends towards decoupling
them. On the other hand, the tendancy of the Cartesian
shell to continue to thin makes the instability feedthough
and coupling of the interfaces inevitable.

Conclusion. We have developed a set of equations
describing the nonlinear instability of pressure driven
shells in both Cartesian and cylindrically convergent ge-
ometries. The analysis, based upon the original work
of Layzer [Ref. [3]], appears to work fairly well at de-
scribing the evolution of the bubble apex even in con-
vergent geometry. The model appears to accurately pre-
dict the shell trajectory and velocity when compared to
simulation and to a lesser extent predicts shell thickness
changes. Unlike constant acceleration models of unsta-
ble shells, the present model includes the effect of chang-
ing acceleration in response to shell thickness evolution—a
condition more relevant to inertial confinment fusion.
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FIG. 4. The parameters related to bubble curvature, a:(t)
and [2(t), are shown as the models for the Cartesian and
cylindrical shells are evolved. A decreasing as or 3> parame-
ter indicates flattening. The Cartesian shell shows much more
correlation between the curvature of the upper and lower in-
terface than the cylindrical case shows. The Cartesian shell
also shows an oscillation in the interface curvature that is not
seen in the cylindrical version.
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